a2 United States Patent

Rossi et al.

US009274700B2

US 9,274,700 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(30)

(1)

(52)

(58)

SUPPORTING DIFFERENT EVENT MODELS
USING A SINGLE INPUT SOURCE
Inventors: Jacob S. Rossi, Seattle, WA (US); Justin
E. Rogers, Redmond, WA (US); Nathan
J. E. Furtwangler, Seattle, WA (US)
Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 64 days.
Appl. No.: 13/363,188
Filed: Jan. 31, 2012
Prior Publication Data
US 2013/0179598 Al Jul. 11, 2013
Foreign Application Priority Data
Jan. 6,2012 (CA) oo 2763328
Int. CL.
GO6F 3/00 (2006.01)
GO6F 13/12 (2006.01)
G09G 5/00 (2006.01)
GO6F 3/041 (2006.01)
GO6F 9/44 (2006.01)
GO6F 3/0488 (2013.01)
GO6F 3/038 (2013.01)
U.S. CL
CPC ... GOG6F 3/0488 (2013.01); GO6F 3/038
(2013.01)
Field of Classification Search

CPC . GOGF 9/5066; GOGF 17/30914; GOGF 3/016;
GOGF 3/017; GOGF 3/021; GOGF 3/0213;

GO5B 2219/13022; GO5B 2219/35381; GO5B
2219/35546; GO5B 2219/36232

710/8, 5,11, 14, 16, 62, 73; 345/173;
719/310,318;711/103
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6/2000 Slonim
9/2003 McCabe

(Continued)

719/310
710/5

6,073,183 A *
6,625,665 Bl *

FOREIGN PATENT DOCUMENTS

FI
GB

GB 2466077 A *
2466077

6/2010
6/2010

(Continued)
OTHER PUBLICATIONS

GOG6F 3/038

“Converting single-touch events to mouse events”” Random
Thoughts of a Programmer. Dec. 22, 2010.*

(Continued)

Primary Examiner — Farley Abad

Assistant Examiner — Henry Yu

(74) Attorney, Agent, or Firm — Bryan Webster; Kate
Drakos; Micky Minhas

(57) ABSTRACT

In at least some embodiments, input provided by a single
source generates events representing multiple source types
through a mapping process, e.g. a touch input generates both
touch and mouse events. By configuring the system to not
recognize certain gestures, messages associated with the
events of the different source types are then interleaved and
provided to an associated application for processing. Effi-
ciencies are gained by configuring the system to interleave the
messages associated with the source types because messages
of one source type can be processed sooner than if the mes-
sages of the one source type were queued up and sent in a
non-interleaved fashion.

20 Claims, 5 Drawing Sheets

300

\i Receive configuration information to not
recognize one or more gestures

'

Receive inputs

302 /
R

of a first type

the first input iype

304 \| Generate messages associated with J

308 \3 Generate messages associated with a
! second input lype that is different from
the first input type

308 —;

Formulate an interleaved message
stream that includes messages
i associated with the first and second
' input types

US 9,274,700 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,657,615 B2
7,035,909 B1*

12/2003 Harada
4/2006 Leeetal. ..o 709/217

7,932,895 B2* 4/2011 Rainisto 345/173
8,108,843 B2* 1/2012 Nairetal. T17/139
2002/0116601 Al* 82002 Skrzeszewskietal. 712/219
2003/0025839 Al* 2/2003 Xiang ... GO6T 1/60
348/714

2005/0198578 Al
2006/0077174 Al
2009/0300530 Al
2010/0020025 Al*

9/2005 Agrawala et al.
4/2006 Chung et al.
12/2009 Falchuk
1/2010 Lemortetal. 345/173

2011/0050610 Al* 3/2011 Pearceetal. 345/173
2011/0175827 Al 7/2011 Bogue

2012/0110242 Al* 5/2012 Tsaietal. ... 711/103
2012/0174121 Al* 7/2012 Treatetal. 719/318

FOREIGN PATENT DOCUMENTS

JP 2004362052 A 12/2004
JP 2010033104 A 2/2010
KR EP 1971096 A2 * 9/2008 ... HO4L 1/0003
WO WO0-2007030310 3/2007
WO WO0-2010026587 3/2010
OTHER PUBLICATIONS

“International Search Report”, Mailed Date: Apr. 23, 2013, Applica-
tion No. PCT/US2013/020431, Filed Date: Jan. 6, 2013, pp. 8.
Bastea-Forte, et al., “Pointer: Multiple Collocated Display Inputs
Suggests New Models for Program Design and Debugging”,
Retrieved at <<http://hci.stanford.edu/publications/2007/pointer/
Pointer. Abstract. UIST2007 pdf>>, In The 20th Annual ACM Sym-
posium on User Interface Software and Technology, 2007, pp. 2.
“Foreign Office Action”, Canadian Application No. 2763328, (Apr.
19, 2013), 8 pages.

“Foreign Office Action”, Canadian Application No. 2763328, (Nov.
23, 2012), 5 pages.

Villar, et al., “Mouse 2.0: Multi-touch Meets the Mouse”, Retrieved
at <<http://research. microsoft.com/en-us/um/people/benko/publica-
tions/2009/uist304-mouse2.pdf >>, Proceedings of the 22nd annual

ACM symposium on User interface software and technology, Oct.
4-7, 2009, pp. 33-42.

Matejka, et al., “The Design and Evaluation of Multi-Finger Mouse
Emulation Techniques”, Retrieved at <<http://www.dgp.toronto.
edu/~tovi/papers/2009%20CHI%20SDMouse.pdf>>, Proceedings
of the 27th international conference on Human factors in computing
systems, Apr. 7, 2009, pp. 1073-1082.

Hinckley, et al,, “Touch-Sensing Input Devices”, Retrieved at
<<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.
4788&rep=repl&type=pdf>>, Proceedings of the SIGCHI confer-
ence on Human factors in computing systems: the CHI is the limit,
1999, pp. 223-230.

Velera, “Converting single-touch events to mouse events”, Retrieved
at <<http://vetruvet.blogspot.com/2010/12/converting-single-touch-
events-to-mouse. html>>, Dec. 22, 2010, pp. 5.

“jQuery Drag Event Plugin with Touch Support”, Retrieved at
<<http://www.shamasis.net/projects/query-touch-drag/>>,
Retrieved Date: Jan. 5, 2012, pp. 11.

“Foreign Office Action”, Canadian Application No. 2763328, (May
7,2012), 5 pages.

“Foreign Office Action”, Canadian Application No. 2763328, (Jul.
25,2012), 5 pages.

“Foreign Office Action”, CA Application No. 2,763,328, Oct. 22,
2013, 3 pages.

“Foreign Office Action”, CA Application No. 2,763,328, Mar. 28,
2014, 4 pages.

“Random Thoughts of a Programmer: Converting Single-Touch
Events to Mouse Events”, Retrieved from: <http://vetruvet.blogspot.
com/2010/12/converting-single-touch-events-to-mouse.html> on
Nov. 30, 2012, Dec. 22, 2010, 5 pages.

“Foreign Office Action”, CA Application No. 2,763,328, Jun. 20,
2014, 4 Pages.

“Foreign Office Action”, CA Application No. 2,763,328, Oct. 24,
2014, 6 Pages.

“Supplementary European Search Report”, EP Application No.
137336749, Jul. 14, 2015, 6 pages.

“Foreign Office Action”, CA Application No. 2,763,328, Mar. 24,
2015, 3 pages.

“Extended European Search Report”, EP Application No. 13733674.
9, Nov. 9, 2015, 13 pages.

* cited by examiner

U.S. Patent

Mar. 1, 2016

116 —

Sheet 1 of 5

US 9,274,700 B2

/~1oo

[

Photos

Shared

Computing Device 102

Operating
System

Input Message
Generation Module
104

Application

Message
Correlation
Module
106

(

Gesture Module
105

)

Ig. 1

U.S. Patent Mar. 1, 2016 Sheet 2 of 5 US 9,274,700 B2

200 ’\

-

e Platform 210
~. (Web Services &)

[Operating Computing Device 202)
System
Sysiem Application
[Input Message Generation)
Module 104 Message Correlation
Module
Gesture Module 106
105
\ S
A
4 A
(Mobile 202) (Computer 204 h 4 Television 206)
© PC, laptops,
- © netbooks
STB, Xbox, TVs
. \o J

U.S. Patent Mar. 1, 2016 Sheet 3 of 5

300 Receive configuration information to not
recognize one or more gestures

l

302
W Receive inputs of a first type

|

304 w Generate messages associated with J

the first input type

|

Generate messages associated with a
second input type that is different from
the first input type

Y

306 w
308 # Formulate an interleaved message

stream that includes messages
associated with the first and second
input types

Fig. 3

US 9,274,700 B2

U.S. Patent Mar. 1, 2016 Sheet 4 of 5 US 9,274,700 B2

400 j Receive a first message associated J

with a first input type

|

402 _\ Process the first message to produce
‘ data
404 v
j Cache data in a data cache]

\ Receive a second message associated
. with a second different input type

|

408 \3 Correlate second message with first
’ message

|

\i Use cached data to process second
| message

406

410

Fig. 4

U.S. Patent Mar. 1, 2016 Sheet 5 of 5 US 9,274,700 B2
(" N
Device 500

4 N
Computer-Readable Media 514 d)
- N N Commuplcatlon
Device Operating Devices
Applications System 502
518 520 N /
N @ h
N\ . Device
Gesture Capture Interface Data
Driver Application 504
524 522 N
\\ \, ™~
Data
Input(s)
Input Message Gesture Module L 206
Generation Module 525b
2208 Communication
Interface(s)
Message Correlation 508
Module N
525¢ < ™
\ Processor(s)
510
e) ™ L
Processing
& Control
Storage 512
Media L
516
4 ™
Audio
System
~
Audio / Video == 528
Input / Output
s N
226 —> Display
System
530
\,
N J

Fig. 5

US 9,274,700 B2

1
SUPPORTING DIFFERENT EVENT MODELS
USING A SINGLE INPUT SOURCE

PRIORITY CLAIM

This application claims priority under 35 U.S.C. §119 to
Canadian Patent Application Serial No. 2,763,328 filed in
Canada on Jan. 6, 2012 and titled “Supporting Different
Event Models using a Single Input Source,” the disclosure of
which is incorporated by reference in its entirety herein.

BACKGROUND

Many web sites are primarily designed for mouse input.
That is, the web sites react to script events such as mouse-
down, mouseup, mousemove. However, newer hardware
devices and evolving platforms have provided the capability
for entering input by other ways, e.g., touch input and input
through a natural user interface (NUI). These newer devices
and systems can present compatibility and performance chal-
lenges for applications that were designed primarily for
mouse input.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter.

In at least some embodiments, input provided by a single
source generates events representing multiple source types
through a mapping process, e.g. a touch input generates both
touch and mouse events. By configuring the system to not
recognize certain gestures, messages associated with the
events of the different source types are then interleaved and
provided to an associated application for processing. Effi-
ciencies are gained by configuring the system to interleave the
messages associated with the source types because messages
of one source type can be processed sooner than if the mes-
sages of the one source type were queued up and sent in a
non-interleaved fashion.

In at least some other embodiments, messages associated
with the different source types are correlated in a cache. Data
that is produced from one message is saved and re-used in
association with a correlated message so that the processing
that produced the data does not have to be repeated.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The use of the same reference numbers
in different instances in the description and the figures may
indicate similar or identical items.

FIG. 1 is an illustration of an environment in an example
implementation in accordance with one or more embodi-
ments.

FIG. 2 is an illustration of a system in an example imple-
mentation showing FIG. 1 in greater detail.

FIG. 3 is a flow diagram that describes steps in a method in
accordance with one or more embodiments.

FIG. 4 is a flow diagram that describes steps in a method in
accordance with one or more embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates an example computing device that can be
utilized to implement various embodiments described herein.

DETAILED DESCRIPTION

Overview

In at least some embodiments, input provided by a single
source generates events representing multiple source types
through a mapping process, e.g. a touch input generates both
touch and mouse events. By configuring the system to not
recognize certain gestures, messages associated with the
events of the different source types are then interleaved and
provided to an associated application for processing. Effi-
ciencies are gained by configuring the system to interleave the
messages associated with the source types because messages
of one source type can be processed sooner than if the mes-
sages of the one source type were queued up and sent in a
non-interleaved fashion.

In at least some other embodiments, messages associated
with the different source types are correlated in a cache. Data
that is produced from one message is saved and re-used in
association with a correlated message so that the processing
that produced the data does not have to be repeated.

In the following discussion, an example environment is
first described that is operable to employ the techniques
described herein. Example illustrations of the various
embodiments are then described, which may be employed in
the example environment, as well as in other environments.
Accordingly, the example environment is not limited to per-
forming the described embodiments and the described
embodiments are not limited to implementation in the
example environment.

Example Operating Environment

FIG. 1 is an illustration of an environment 100 in an
example implementation that is operable to employ the tech-
niques described in this document. The illustrated environ-
ment 100 includes an example of a computing device 102 that
may be configured in a variety of ways. For example, the
computing device 102 may be configured as a traditional
computer (e.g., a desktop personal computer, laptop com-
puter, and so on), a mobile station, an entertainment appli-
ance, a set-top box communicatively coupled to a television,
a wireless phone, a netbook, a game console, a handheld
device, and so forth as further described in relation to FIG. 2.
Thus, the computing device 102 may range from full resource
devices with substantial memory and processor resources
(e.g., personal computers, game consoles) to a low-resource
device with limited memory and/or processing resources
(e.g., traditional set-top boxes, hand-held game consoles).
The computing device 102 also includes software that causes
the computing device 102 to perform one or more operations
as described below.

Computing device 102 includes an operating system hav-
ing an input message generation module 104 and a gesture
module 105. In addition, the computing device includes one
or more applications having or otherwise making use of a
message correlation module 106. In operation, the operating
system receives hardware input and, using input from gesture
module 105, produces messages for the application using the
input message generation module 104. Among its roles, the
application configures the operating system such that the
messages it produces using the input message generation
module 104 are interleaved. This can be achieved by commu-
nicating to the operating system that certain gestures, e.g.,
those that map to right-click messages and time-spanning

US 9,274,700 B2

3

gestures like “press and hold”, are not desired to be detected.
In addition, the message correlation module 106 consumes
the interleaved messages and correlates them together in a
cache, as described below. The correlated messages can be
used in order to share data between two event streams, thus
promoting better performance, as will become apparent
below.

Gesture module 105 recognizes input pointer gestures that
can be performed by one or more fingers, and causes opera-
tions or actions to be performed that correspond to the ges-
tures. The gestures may be recognized by module 105 in a
variety of different ways. For example, the gesture module
105 may be configured to recognize a touch input, such as a
finger of auser’s hand 106a as proximal to display device 108
of'the computing device 102 using touchscreen functionality,
or functionality that senses proximity of a user’s finger that
may not necessarily be physically touching the display device
108, e.g., using near field technology. Module 105 can be
utilized to recognize single-finger gestures and bezel ges-
tures, multiple-finger/same-hand gestures and bezel gestures,
and/or multiple-finger/different-hand gestures and bezel ges-
tures. The functionality implemented by modules 104 and/or
105 can be implemented by any suitably configured applica-
tion such as, by way of example and not limitation, a web
browser. Other applications can be utilized without departing
from the spirit and scope of the claimed subject matter.

The computing device 102 may also be configured to detect
and differentiate between a touch input (e.g., provided by one
or more fingers of the user’s hand 106a) and a stylus input
(e.g., provided by a stylus 116). The differentiation may be
performed in a variety of ways, such as by detecting an
amount of the display device 108 that is contacted by the
finger of the user’s hand 1064 versus an amount of the display
device 108 that is contacted by the stylus 116.

Thus, the gesture module 105 may support a variety of
different gesture techniques through recognition and leverage
of a division between stylus and touch inputs, as well as
different types of touch inputs and non-touch inputs.

FIG. 2 illustrates an example system 200 showing the input
message generation module 104, gesture module 105, and
message correlation module 106 as being implemented in an
environment where multiple devices are interconnected
through a central computing device. The central computing
device may be local to the multiple devices or may be located
remotely from the multiple devices. In one embodiment, the
central computing device is a “cloud” server farm, which
comprises one or more server computers that are connected to
the multiple devices through a network or the Internet or other
means.

In one embodiment, this interconnection architecture
enables functionality to be delivered across multiple devices
to provide a common and seamless experience to the user of
the multiple devices. Each of the multiple devices may have
different physical requirements and capabilities, and the cen-
tral computing device uses a platform to enable the delivery of
an experience to the device that is both tailored to the device
and yet common to all devices. In one embodiment, a “class”
of target device is created and experiences are tailored to the
generic class of devices. A class of device may be defined by
physical features or usage or other common characteristics of
the devices. For example, as previously described the com-
puting device 102 may be configured in a variety of different
ways, such as for mobile 202, computer 204, and television
206 uses. Each of these configurations has a generally corre-
sponding screen size and thus the computing device 102 may
be configured as one of these device classes in this example
system 200. For instance, the computing device 102 may

10

15

20

25

30

35

40

45

50

55

60

65

4

assume the mobile 202 class of device which includes mobile
telephones, music players, game devices, and so on. The
computing device 102 may also assume a computer 204 class
of device that includes personal computers, laptop comput-
ers, netbooks, and so on. The television 206 configuration
includes configurations of device that involve display in a
casual environment, e.g., televisions, set-top boxes, game
consoles, and so on. Thus, the techniques described herein
may be supported by these various configurations of the com-
puting device 102 and are not limited to the specific examples
described in the following sections.

Cloud 208 is illustrated as including a platform 210 for web
services 212. The platform 210 abstracts underlying function-
ality of hardware (e.g., servers) and software resources of the
cloud 208 and thus may act as a “cloud operating system.” For
example, the platform 210 may abstract resources to connect
the computing device 102 with other computing devices. The
platform 210 may also serve to abstract scaling of resources to
provide a corresponding level of scale to encountered demand
for the web services 212 that are implemented via the plat-
form 210. A variety of other examples are also contemplated,
such as load balancing of servers in a server farm, protection
against malicious parties (e.g., spam, viruses, and other mal-
ware), and so on.

Thus, the cloud 208 is included as a part of the strategy that
pertains to software and hardware resources that are made
available to the computing device 102 via the Internet or other
networks.

The gesture techniques supported by the modules 104, 105
and 106 may be detected using touchscreen functionality in
the mobile configuration 202, track pad functionality of the
computer 204 configuration, detected by a camera as part of
support of a natural user interface (NUI) that does not involve
contact with a specific input device, and so on. Further, per-
formance of the operations to detect and recognize the inputs
to identify a particular gesture may be distributed throughout
the system 200, such as by the computing device 102 and/or
the web services 212 supported by the platform 210 of the
cloud 208.

Generally, any of the functions described herein can be
implemented using software, firmware, hardware (e.g., fixed
logic circuitry), manual processing, or a combination of these
implementations. The terms “module,” “functionality,” and
“logic” as used herein generally represent software, firm-
ware, hardware, or a combination thereof. In the case of a
software implementation, the module, functionality, or logic
represents program code that performs specified tasks when
executed on or by a processor (e.g., CPU or CPUs). The
program code can be stored in one or more computer readable
memory devices. The features of the gesture techniques
described below are platform-independent, meaning that the
techniques may be implemented on a variety of commercial
computing platforms having a variety of processors.

In the discussion that follows, various sections describe
various example embodiments. A section entitled “Message
Interleaving”™ describes how event messages can be inter-
leaved in accordance with one or more embodiments. Next, a
section entitled “Message Correlation” describes how mes-
sages can be correlated in accordance with one or more
embodiments. Last, a section entitled “Example Device”
describes aspects of an example device that can be utilized to
implement one or more embodiments.

Having described example operating environments in
which interleaving and correlation functionality can be uti-
lized, consider now a discussion of'an example embodiments.

Message Interleaving

In message interleaving, input provided by a single source,
such as a touch, generates events of multiple source types,

US 9,274,700 B2

5

e.g., touch events and mouse events, through a mapping pro-
cess. By configuring the system to not recognize certain ges-
tures, messages associated with the events of the different
source types are then interleaved and provided to an associ-
ated application for processing. Efficiencies are gained by
configuring the system to interleave the messages associated
with the different source types because messages of one
source type, e.g. mouse-related messages, can be processed
sooner than if the messages of one source type were queued
up and sent in a non-interleaved fashion.

As a contextual example, consider the following. When
adding support for touch (or some other new input source, e.g.
near field or NUI), a development platform can provide some
type of translation of that new input type to an existing known
input type (e.g., mouse) for the sake of compatibility with
existing webpages or applications. This allows applications
that were written for mouse input to work with touch input, as
well as any other type of input that might not necessarily be
recognized by the application. These types of applications
would not recognize or be able to process touch-related mes-
sages. So, by providing a translation mechanism between the
different message types, older applications can function prop-
erly in the presence of unrecognized input messages. Further-
more, for those applications that recognize both types of
input, message processing can be more efficient because
interleaved messages of one type source will be received
sooner (and processed) than if the messages were all queued
up and sent in separate batches.

One approach to address different message types is as
follows. When gestural touch input is received, the gestural
touch input can be mapped to a sequence of batched mouse
messages. For example, when a sequence of touch messages
indicates a gestural tap, then after having dispatched the touch
messages, the platform might dispatch a predefined sequence
of mouse messages. For example, a “tap” might map to a
mousedown event, a mouseup event and a click event. In this
case, the tap was generated by processing a series of indi-
vidual touch messages. While providing support for older
applications, this approach can have performance issues
because, as noted above, the mouse-related messages are
queued and sent after the touch-related messages. Thus, the
mouse messages are processed later than they would be had
the message stream been interleaved.

To address this situation, in one or more embodiments,
when an input is received, such as a touch input, an event
associated with the touch input is mapped to an event associ-
ated with another input type. Messages associated with the
different events are interleaved and sent to an application,
such as a web browser, for processing. The mapping process
according to this approach is not necessarily gestural based
insofar as waiting for resolution of a touch gesture in order to
then map the gesture to a sequence of mouse events. So, for
example, atouchdown can be mapped to a mousedown, rather
than waiting to resolve the touchdown as a tap, and then
mapping the tap gesture to a sequence of mousedown/mou-
seup/click. In this approach, a touchdown maps to a mouse-
down, atouchup maps to a mouseup, and a tap maps to a click.
In at least some embodiments, there is no distinction between
different mouse buttons, e.g., left and right buttons, in the
mapping process. Using this approach, a touch down can be
immediately mapped to a mouse down. Of course, other
approaches can be utilized including those that support
mouse button differentiation. For example, pen devices often
have a button that can be held while interacting to signal the
interaction is to be mapped to the right mouse button in
mouse-based applications.

10

25

40

45

55

6

Accordingly, using this approach, mapping occurs on a per
message basis, rather than mapping a sequence of messages
to a different sequence of messages. This causes the two
generated message streams, e.g., touch and mouse message
streams, to be interleaved for efficient processing by the
application or web browser.

Using this approach, a simple tap interaction may, in some
systems, dispatch the following events in this order:

MSPointerOver,

mouseover,

MSPointerDown,

mousedown,

MSPointerMove,

mousemove,

MSPointerUp,

mouseup,

MSPointerOut,

mouseout

As can be seen, individual mouse events that have been
translated or mapped from the touch input are received and
processed by the application sooner than if the gesture was
resolved and then mapped to a sequence of mouse events. The
interleaving thus improves performance, as will be appreci-
ated by the skilled artisan, because messages are mapped
sooner, rather than waiting for the completion of a gesture.
Compatibility with legacy content is also improved because
more specific interactions (such as down/move/up versus just
a single tap) are mapped quicker and more closely to their
mouse counterpart.

FIG. 3 is a flow diagram that describes steps in a method
accordance with one or more embodiments. The method can
be performed in connection with any suitable hardware, soft-
ware, firmware, or combination thereof. In at least some
embodiments, the method can be performed by software in
the form of computer readable instructions, embodied on
some type of computer-readable storage medium, which can
be performed under the influence of one or more processors.
Examples of software that can perform the functionality
about to be described are applications that are to receive
messages, an associated operating system, input message
generation module 104 and the gesture module 105 described
above.

Step 300 receives configuration information to not recog-
nize one or more gestures. This step can be performed by an
application notifying the operating system to not recognize
gestures that would otherwise cause a delay in generating
messages associated with the first input type mentioned
below. For example, in at least some embodiments, one ges-
ture that can be the subject of this step is a “press and hold”
gesture. Specifically, in some systems, “taps” map to left
button clicks on a mouse, but “holds” map to right button
clicks. Atthe time the user’s finger comes down, the operating
system cannot determine whether to send left mouse mes-
sages or right mouse messages because it has to wait until it
can safely differentiate tap/holds based, for example, on a
timer. In this instance, the operating system can be configured
to not recognize “holds™. In that state, the operating system
does not have to wait to dispatch mouse messages from the
touch input. It simply treats touch down input as a left mouse
down. Thus, the input message generation module can start
interleaving pointerdown (“touchdown”)/mousedown, point-
erup/mouseup, and the like, as described below.

Step 302 receives inputs of a first type. Any suitable type of
inputs can be received including, by way of example and not
limitation, a touch input or inputs that collectively define a
gesture. Step 304 generates messages associated with the first
input type. Responsive to receiving the inputs of a first type,

US 9,274,700 B2

7

step 306 generates messages associated with a second input
type that is different from the first input type. Any suitable
type of second input type can be utilized. In at least some
embodiments, a second input type comprises a mouse input.

Step 308 formulates an interleaved message stream that
includes messages associated with the first and second input
types interleaved together. In the described approach, this
step is performed as a result of configuring the operating
system to not recognize certain gestures. The formulated
interleaved message stream can then be provided to an appli-
cation, such as a web browser, for processing as appropriate.
It is to be appreciated and understood that interleaving and
subsequent provision of the messages can be performed as the
individual messages are generated, rather than waiting for an
entire associated interleaved message stream to be formed
and then provided to the application or web browser.

One way in which these messages can be processed by an
application or web browser is described in the section just
below.

Message Correlation

In at least some other embodiments, messages associated
with the different sources are correlated in a cache. Data that
is produced from one message is saved and re-used in asso-
ciation with a correlated message so that the processing that
produced the data does not have to be repeated. In some
instances, the processing that produces the data can be expen-
sive. Accordingly, not repeating the processing for the differ-
ent sources, but rather using the cached data for processing
correlated messages can result in efficiencies, as will become
apparent below.

So, for example, in the embodiment described just above, a
single message stream was formulated to include messages
associated with different sources or input types, e.g., touch-
type and mouse-type inputs. Data that is produced as a result
of a touch-type message can be saved and re-used for a
correlated mouse-type message. As an example, consider the
following.

Insome Windows®-based systems, touch input is provided
to an application via Pointer messages, such as WM_POINT-
ERUPDATE messages. A “pointer” is an abstraction that
represents any point of contact such as a mouse, finger, or pen,
and the like. The pointer abstraction makes it easier for devel-
opers to write a single set of pointer events that encapsulate
input from mouse, touch and pen. For compatibility, however,
these messages can also be converted into Mouse messages,
such as WM_MOUSEMOVE messages. It is possible that
applications, such as a web browser, may handle both Pointer
and Mouse messages. However, both sets of messages repre-
sent a single user input source mechanism (e.g., touch), yet it
is not possible to directly correlate a mouse message with the
pointer message for that same interaction.

Using a system of heuristics, different types of messages,
e.g., pointer and mouse messages, can be correlated together
so that data produced when processing pointer messages can
be repurposed for the processing of mouse messages. For
example, in at least some systems, only one touch contact is
mapped into mouse because touch supports multiple pointers,
while mouse does not. So, in systems like this, the first criteria
utilized for correlation is that the Pointer message to be cor-
related is the “primary pointer,” or the one that will get
mapped to mouse. When a primary pointer message is
received, the coordinates of the pointer message along with
the data to be reused for efficiency gains are stored in the
cache.

10

20

25

30

35

40

45

55

60

8

When the mapped mouse message is received, the system
provides a mechanism to ascertain whether this is a true
mouse message (e.g., directly produced from a mouse) or if it
is a mapped mouse message. Ifit is amapped mouse message,
then the cache is checked for a pointer message that has the
same coordinates as the mouse message. If a match is found,
then the corresponding cached data is reused to go along with
the message.

It is to be appreciated and understood, however, that
mechanisms other than coordinates can be used for correla-
tion. For example, if the two input messages share a precise
hardware timestamp, this can be used for association. In
practice, any unique value that is copied to the mouse mes-
sage during the mapping process can be utilized.

As will be appreciated by the skilled artisan, this leads to
improved performance because message-associated work is
reduced. As an example of the type of data that can be cached
and re-used, consider the following.

In some scenarios, when a pointer message is received, an
associated application causes a hit test to be performed. Hit
testing, as will be appreciated by the skilled artisan, is a
mechanism by which an input subsystem processes input
received and maps the received input to a display device
coordinate system and pointer coordinates. The input hit is
identified as coming from a particular user interface element
in an associated display tree. In many instances, processing a
display tree to identify an interface element can be an expen-
sive operation.

The result of the hit test is then stored in a cache if the
pointer message represents a primary pointer (i.e., a first
contact) on the display screen. This is an indication that a
mouse compatibility message (i.e. a mapped message) will
later be received from the system, as described above. When
a corresponding mouse message is received, it is correlated
back to the pointer message by confirming with the system
that the input source was touch and by matching the coordi-
nates of the mouse message with the coordinates of the cor-
responding pointer message. If the mouse message is corre-
lated with a pointer message, then the hit test result from the
pointer message is reused for the processing of the mouse
message. Understandably, this reduces the number of hit tests
for a given user interaction by 50% or more. In addition,
additional data produced while processing the pointer mes-
sage can be cached for use during the processing of the
correlated mouse message as desired. For example, state vari-
ables such as whether the browser should perform a default
action in response to the interaction can be cached as well. As
other examples of additional data that can be cached, consider
the following. In some instances, touch-specific information,
such as contact pressure, can be stored. Then, when a mouse
message is correlated, a decision to perform “left button” or
“right button” actions can be made based on how hard the
contact was pressed.

Another class of examples include flags that indicate that
an action was performed and to not perform it again. For
example, if a pointer message is received that indicates that a
finger is designating a new element, then a CSS Hover can be
applied to it. When mouse message is then received, this
action need not be repeated. Accordingly, a flag can be stored
to indicate thathover has already been applied to that element.

FIG. 4 is a flow diagram that describes steps in a method
accordance with one or more embodiments. The method can
be performed in connection with any suitable hardware, soft-
ware, firmware, or combination thereof. In at least some
embodiments, the method can be performed by software in
the form of computer readable instructions, embodied on
some type of computer-readable storage medium, which can

US 9,274,700 B2

9

be performed under the influence of one or more processors.
Examples of software that can perform the functionality
about to be described are the interleaving and correlation
module 104 and the gesture module 105 described above.

Step 400 receives a first message associated with a first
input type. Any suitable input type can be utilized. In at least
some embodiments, the first input type comprises an input
type associated with a touch input. Step 402 processes the first
message to produce data. Any suitable type of data can be
produced. In at least some embodiments, the data that is
produced comprises data associated with a hit test. In at least
some other embodiments, the data that is produced comprises
data associated with an application state. Examples of state
are provided above, as well as additional types of data. Step
404 caches the produced data in a data cache. Step 406
receives a second message associated with a second different
input type. Any suitable type of different input can be utilized.
In atleast some embodiments, the second different input type
comprises mouse input. In addition, the second message can
comprise one that is produced to enable an application that
may not understand the first message or first input type to
process the first input type using the second message. In at
least some embodiments, the second message can constitute a
message that is produced by way of a mapping process such
as that which is described above.

Step 408 correlates the second message with the first mes-
sage. Any suitable approach can be utilized correlate the
messages, examples of which are provided above. Step 410
uses the cached data to process the second message. By using
the cached data to process the second message, work that was
performed to process the first message to produce the data can
be avoided.

Having considered various example embodiments, con-
sider now an example device that can be used to implement
the embodiments described above.

Example Device

FIG. 5 illustrates various components of an example device
500 that can be implemented as any type of portable and/or
computer device as described with reference to FIGS. 1 and 2
to implement embodiments of the animation library
described herein. Device 500 includes communication
devices 502 that enable wired and/or wireless communication
of device data 504 (e.g., received data, data that is being
received, data scheduled for broadcast, data packets of the
data, etc.). The device data 504 or other device content can
include configuration settings of the device, media content
stored on the device, and/or information associated with a
user of the device. Media content stored on device 500 can
include any type of audio, video, and/or image data. Device
500 includes one or more data inputs 506 via which any type
of data, media content, and/or inputs can be received, such as
user-selectable inputs, messages, music, television media
content, recorded video content, and any other type of audio,
video, and/or image data received from any content and/or
data source.

Device 500 also includes communication interfaces 508
that can be implemented as any one or more of a serial and/or
parallel interface, a wireless interface, any type of network
interface, a modem, and as any other type of communication
interface. The communication interfaces 508 provide a con-
nection and/or communication links between device 500 and
a communication network by which other electronic, com-
puting, and communication devices communicate data with
device 500.

10

15

20

25

30

35

40

45

50

55

60

65

10

Device 500 includes one or more processors 510 (e.g., any
of microprocessors, controllers, and the like) which process
various computer-executable or readable instructions to con-
trol the operation of device 500 and to implement the embodi-
ments described above. Alternatively or in addition, device
500 can be implemented with any one or combination of
hardware, firmware, or fixed logic circuitry that is imple-
mented in connection with processing and control circuits
which are generally identified at 512. Although not shown,
device 500 can include a system bus or data transfer system
that couples the various components within the device. A
system bus can include any one or combination of different
bus structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or
local bus that utilizes any of a variety of bus architectures.

Device 500 also includes computer-readable media 514,
such as one or more memory components, examples of which
include random access memory (RAM), non-volatile
memory (e.g., any one or more of a read-only memory
(ROM), flash memory, EPROM, EEPROM, etc.), and a disk
storage device. A disk storage device may be implemented as
any type of magnetic or optical storage device, such as a hard
disk drive, a recordable and/or rewriteable compact disc
(CD), any type of a digital versatile disc (DVD), and the like.
Device 500 can also include a mass storage media device 516.

Computer-readable media 514 provides data storage
mechanisms to store the device data 504, as well as various
device applications 518 and any other types of information
and/or data related to operational aspects of device 500. For
example, an operating system 520 can be maintained as a
computer application with the computer-readable media 514
and executed on processors 55. The device applications 518
can include a device manager (e.g., a control application,
software application, signal processing and control module,
code that is native to a particular device, a hardware abstrac-
tion layer for a particular device, etc.), as well as other appli-
cations that can include, web browsers, image processing
applications, communication applications such as instant
messaging applications, word processing applications and a
variety of other different applications. The device applica-
tions 518 also include any system components or modules to
implement embodiments of the techniques described herein.
In this example, the device applications 518 include an inter-
face application 522 and a gesture-capture driver 524 that are
shown as software modules and/or computer applications.
The gesture-capture driver 524 is representative of software
that is used to provide an interface with a device configured to
capture a gesture, such as a touchscreen, track pad, camera,
and so on. Alternatively or in addition, the interface applica-
tion 522 and the gesture-capture driver 524 can be imple-
mented as hardware, software, firmware, or any combination
thereof. In addition, computer readable media 514 can
include an input message generation module 5254, a gesture
module 5255, and a message correlation module 525¢ that
function as described above.

Device 500 also includes an audio and/or video input-
output system 526 that provides audio data to an audio system
528 and/or provides video data to a display system 530. The
audio system 528 and/or the display system 530 can include
any devices that process, display, and/or otherwise render
audio, video, and image data. Video signals and audio signals
can be communicated from device 500 to an audio device
and/or to a display device via an RF (radio frequency) link,
S-video link, composite video link, component video link,
DVI (digital video interface), analog audio connection, or
other similar communication link. In an embodiment, the
audio system 528 and/or the display system 530 are imple-

US 9,274,700 B2

11

mented as external components to device 500. Alternatively,
the audio system 528 and/or the display system 530 are imple-
mented as integrated components of example device 500.

Conclusion

In at least some embodiments, input provided by a single
source generates events representing multiple source types
through a mapping process, e.g. a touch input generates both
touch and mouse events. By configuring the system to not
recognize certain gestures, messages associated with the
events of the different source types are then interleaved and
provided to an associated application for processing. Effi-
ciencies are gained by configuring the system to interleave the
messages associated with the source types because messages
of one source type can be processed sooner than if the mes-
sages of the one source type were queued up and sent in a
non-interleaved fashion.

In at least some other embodiments, messages associated
with the different source types are correlated in a cache. Data
that is produced from one message is saved and re-used in
association with a correlated message so that the processing
that produced the data does not have to be repeated.

Although the embodiments have been described in lan-
guage specific to structural features and/or methodological
acts, itis to be understood that the embodiments defined in the
appended claims are not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claimed embodiments.

What is claimed is:

1. A method comprising:

receiving configuration information to not recognize one

or more gestures;

receiving a sequence of inputs of a first input type that

collectively define a gesture;
generating individual messages associated with individual
inputs of the sequence of inputs of the first input type;

mapping, on a per input basis and without waiting for
resolution of the sequence of inputs to the gesture, the
individual inputs of the first input type to a second input
type to generate individual messages associated with the
second input type that are diftferent from the first input
type; and

forming an interleaved message stream that includes both

the individual messages associated with the first input
type and the individual messages associated with the
second input type interleaved together.

2. The method of claim 1, wherein the receiving inputs of
the first input type comprises receiving touch inputs.

3. The method of claim 1, wherein the second input type
comprises a mouse input.

4. The method of claim 1, wherein the second input type
does not comprise a mouse input.

5. The method of claim 1 further comprising providing the
interleaved message stream to an application.

6. The method of claim 1 further comprising providing the
interleaved message stream to a web browser.

7. The method of claim 1 further comprising providing
messages associated with the first and second input types to
an application as individual respective messages are gener-
ated.

8. The method of claim 1, wherein generating individual
messages associated with the first input type comprises gen-
erating pointer messages.

9. The method of claim 1, wherein generating individual
messages associated with the first input type comprises gen-
erating pointer messages and generating individual messages

5

10

15

20

25

30

35

40

45

50

55

60

65

12

associated with the second input type comprises generating
messages associated with mouse input.

10. A system comprising:

at least a memory and a processor to implement a module

configured to:

receive individual inputs of a sequence of inputs of a first
input type from a single input source;

map the individual inputs of the sequence of inputs of the
first input type to individual inputs of a second difter-
ent input type as the individual inputs of the sequence
of inputs of the first input type are received without
waiting for each of the individual inputs of the
sequence of inputs of the first input type to be
received; and

formulate an interleaved message stream that interleaves
individual messages associated with each individual
input of the first input type with individual messages
associated with each input of the second different
input type for provision to an application or web
browser.

11. The system of claim 10, wherein the first input type
comprises a touch type and the second different input type
comprises a mouse type.

12. The method of claim 1, wherein receiving individual
inputs of a first input type comprise receiving touch inputs,
and wherein the second different input type comprises a
mouse input.

13. A computing device comprising:

one or more processors; and

one or more memories comprising instructions stored

thereon that, responsive to execution by the one or more
processors, perform operations comprising:

receiving configuration information to not recognize one

or more gestures;

receiving individual inputs of a sequence of inputs of a first

input type;
generating individual messages associated with the indi-
vidual inputs of the sequence of inputs of the first input
type; mapping, on a per input basis without waiting for
all of the individual inputs of the sequence of inputs of
the first input type to be received, the individual inputs of
the first input type to a second input type to generate
individual messages associated with the second input
type that are different from the first input type; and

forming an interleaved message stream that includes both
the individual messages associated with the first input
type and the individual messages associated with the
second input type interleaved together.

14. The computing device of claim 13, wherein the receiv-
ing individual inputs of the first input type comprises receiv-
ing touch inputs.

15. The computing device of claim 13, wherein the receiv-
ing individual inputs of the first input type comprises receiv-
ing inputs that collectively define a gesture.

16. The computing device of claim 13, wherein the second
input type comprises a mouse input.

17. The computing device of claim 13, wherein the second
input type does not comprise a mouse input.

18. The computing device of claim 13, wherein the opera-
tions further comprise providing the interleaved message
stream to an application.

19. The system of claim 10, wherein the second different
input type comprises a mouse input type.

20. The system of claim 10, wherein the second different
input type does not comprise a mouse input type.

#* #* #* #* #*

